Thursday, 25 April 2019

Mudança média filtro atraso


A média móvel como um filtro A média móvel é freqüentemente usada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, passagem alta e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por meio da média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros no Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo como o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel realiza uma convolução da sequência de entrada (xn) com um impulso retangular de comprimento (N) e altura (1N) (para tornar a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo parecido com o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência de voz que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído e, ao mesmo tempo, manter uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, as amostras de média (N) têm o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma maneira muito eficiente. Ele segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O fim, enquanto o termo (xn-N1N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação em ponto flutuante geralmente é mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicações de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora o FIR Filter Basics 1.1 O que são quotFIR filtersquot Os filtros FIR são um dos dois principais tipos de filtros digitais utilizados nas aplicações DSP (Digital Signal Processing), sendo o outro tipo IIR. 1.2 O que quotFIRquot significa quotFIRquot significa quotFinite Impulse Responsequot. Se você colocar um impulso, isto é, uma única amostra de quot1quot seguida de muitas amostras de quot0quot, os zeros sairão depois que a amostra de quot1ch foi feita através da linha de atraso do filtro. 1.3 Por que a resposta ao impulso é quotfinitequot No caso comum, a resposta ao impulso é finita porque não há feedback na FIR. A falta de feedback garante que a resposta ao impulso será finita. Portanto, o termo quotfinite impulso responsequot é quase sinônimo de quotno feedbackquot. No entanto, se o feedback for empregado, a resposta ao impulso é finita, o filtro ainda é uma FIR. Um exemplo é o filtro de média móvel, no qual a Nth amostra anterior é subtraída (alimentada de volta) cada vez que uma nova amostra entra. Esse filtro possui uma resposta de impulso finito mesmo que use feedback: após N amostras de um impulso, a saída Será sempre zero. 1.4 Como faço para quotFIRquot Algumas pessoas dizem que as letras F-I-R outras pessoas pronunciam como se fosse um tipo de árvore. Nós preferimos a árvore. (A diferença é se você fala sobre um filtro F-I-R ou um filtro FIR). 1.5 Qual é a alternativa aos filtros FIR Os filtros DSP também podem ser QuotInfinite Impulse Responsequot (IIR). (Consulte as perguntas frequentes de dspGurus IIR). Os filtros IIR usam comentários, então, quando você insere um impulso, a saída toca teoricamente por tempo indeterminado. 1.6 Como os filtros FIR se comparam aos filtros IIR Cada um tem vantagens e desvantagens. No geral, porém, as vantagens dos filtros FIR superam as desvantagens, então são usadas muito mais do que IIRs. 1.6.1 Quais são as vantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR oferecem as seguintes vantagens: podem ser facilmente concebidos para serem quotlinear phasequot (e geralmente são). Simplificando, os filtros de fase linear atrasam o sinal de entrada, mas donrsquot distorce sua fase. Eles são simples de implementar. Na maioria dos microprocessadores DSP, o cálculo do FIR pode ser feito fazendo uma única instrução em loop. Eles são adequados para aplicações de taxa múltipla. Por taxa múltipla, queremos dizer quotdecimationquot (reduzir a taxa de amostragem), quotinterpolationquot (aumentar a taxa de amostragem), ou ambos. Se diz ou interpola, o uso de filtros FIR permite que alguns dos cálculos sejam omitidos, proporcionando assim uma eficiência computacional importante. Em contraste, se os filtros IIR forem usados, cada saída deve ser calculada individualmente, mesmo que a saída seja descartada (então o feedback será incorporado no filtro). Eles têm propriedades numéricas desejáveis. Na prática, todos os filtros DSP devem ser implementados usando aritmética de precisão finita, ou seja, um número limitado de bits. O uso de aritmética de precisão finita em filtros IIR pode causar problemas significativos devido ao uso de feedback, mas os filtros FIR sem feedback geralmente podem ser implementados usando menos bits e o designer tem menos problemas práticos para resolver relacionados à aritmética não ideal. Eles podem ser implementados usando aritmética fracionada. Ao contrário dos filtros IIR, sempre é possível implementar um filtro FIR usando coeficientes com uma magnitude inferior a 1,0. (O ganho global do filtro FIR pode ser ajustado na sua saída, se desejado.) Esta é uma consideração importante ao usar DSP de ponto fixo, porque torna a implementação muito mais simples. 1.6.2 Quais são as desvantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR às vezes têm a desvantagem de que exigem mais memória e ou cálculo para atingir uma determinada característica de resposta do filtro. Além disso, certas respostas não são práticas de implementar com os filtros FIR. 1.7 Quais são os termos utilizados na descrição dos filtros FIR Resposta de Impulso - A resposta de preço razoável de um filtro FIR é, na verdade, apenas o conjunto de coeficientes de FIR. (Se você colocou um quotimplusequot em um filtro FIR que consiste em uma amostra de quot1quot seguida de muitas amostras de quot0quot, a saída do filtro será o conjunto de coeficientes, uma vez que a 1 amostra passa por cada coeficiente, por sua vez, para formar a saída.) Tap - Um quottaq de FIR é simplesmente um par de coeficientes de conversão. O número de torneiras FIR, (geralmente designado como quotNquot) é uma indicação de 1) a quantidade de memória necessária para implementar o filtro, 2) o número de cálculos necessários e 3) a quantidade de quotfilteringquot que o filtro pode efetuar, Mais torneiras significa mais atenuação de parada, menos ondulação, filtros mais estreitos, etc. Multiply-Accumulate (MAC) - Em um contexto FIR, quotMACquot é a operação de multiplicação de um coeficiente pela amostra de dados atrasada correspondente e acumulando o resultado. As FIR normalmente requerem um MAC por toque. A maioria dos microprocessadores DSP implementam a operação MAC em um único ciclo de instruções. Banda de transição - A faixa de freqüências entre banda passante e bordas de banda de parada. Quanto mais estreita a banda de transição, mais torneiras são necessárias para implementar o filtro. (Uma banda de transição quotsmallquot resulta em um filtro quotsharpquot.) Linha de atraso - O conjunto de elementos de memória que implementam os elementos de atraso quotZ-1quot do cálculo do FIR. Buffer circular - Um buffer especial que é quotcircularquot porque o incremento no final faz com que ele envolva ao início, ou porque decrementar desde o início faz com que ele envolva até o final. Os buffers circulares geralmente são fornecidos por microprocessadores DSP para implementar o quotmovementquot das amostras através da linha de atraso FIR sem ter que mover literalmente os dados na memória. Quando uma nova amostra é adicionada ao buffer, ele substitui automaticamente o mais antigo. Filtro Médico Motivo Recorrente bull quot quot (0) 0 bull 2 ​​160160160160 O filtro de média móvel é um filtro FIR de comprimento N com todos os torneios ajustados iguais a (1N ) .160 É conhecida pela péssima separação de frequência, mas excelente resposta no tempo - nesse sentido, é um filtro Bessel Bessels.160 Você pode implementá-lo com o bloco SigmaStudios FIR, conforme descrito aqui: quanto mais tempo o filtro, mais suavizado - - mas o algoritmo de filtro FIR padrão usa muitas instruções para filtros enormes, porque tem que multiplicar coeficientes para cada toque.160 Isso é um desperdício quando todos os coeficientes são iguais.160 Como o capítulo 15 do livro de Steven W. Smiths aponta , Você pode fazer um filtro de média móvel com uma técnica recursiva que tenha uma torneira antes e depois de um atraso de tamanho (N-1). Esse filtro aparece abaixo como parte de um circuito de teste com fonte de sinal e um filtro Bessel para comparação: 160160160160 Coeficientes são polia D para o bloco de ganho único na entrada.160 A amostra atual adiciona a saída à medida que entra no atraso, a amostra atrasada subtrai da saída à medida que ela sai.160 O sumador com o feedback acumula essas adições e subtrações para formar o Saída - isso faz algo que é trivial em C, mas é de outra forma uma dor na GUI.160 Embora seja utilizada uma técnica recursiva, o filtro continua sendo um verdadeiro filtro FIR - o comprimento de sua resposta de impulso é definido apenas pelo seu atraso. 160160160160 A minha entrada de teste é uma onda quadrada com ruído adicional.160 Os resultados filtrados aparecem como o traçado superior em ambas as fotos - Primeiro o filtro médio móvel: o filtro Bessel: 160160160160 O filtro médio móvel permite mais ruído, mas melhor preserva a As ondas quadradas formam - não circunda os cantos e as encostas para cima e para baixo são simétricas (sua fase linear) .160 Ouvir as duas formas de onda com fones de ouvido mostra um resultado semelhante - mais ruído com o filtro médio móvel, mas a característica Surge o som de uma onda quadrada.

No comments:

Post a Comment